Determination of the drag coefficient during the first and second gliding positions of the breaststroke underwater stroke.
نویسندگان
چکیده
The purpose of the current study was to assess and to compare the hydrodynamics of the first and second gliding positions of the breaststroke underwater stroke used after starts and turns, considering drag force (D), drag coefficient (CD) and cross-sectional area (S). Twelve national-level swimmers were tested (6 males and 6 females, respectively 18.2±4.0 and 17.3±3.0 years old). Hydrodynamic parameters were assessed through inverse dynamics from the velocity to time curve characteristic of the underwater armstroke of the breaststroke technique. The results allow us to conclude that, for the same gliding velocities (1.37±0.124 m/s), D and the swimmers' S and CD values obtained for the first gliding position are significantly lower than the corresponding values obtained for the second gliding position of the breaststroke underwater stroke (31.67±6.44 N vs. 46.25±7.22 N; 740.42±101.89 cm2 vs. 784.25±99.62 cm2 and 0.458±0.076 vs. 0.664±0.234, respectively). These differences observed for the total sample were not evident for each one of the gender's subgroups.
منابع مشابه
Hydrodynamic drag during gliding in swimming.
This study used a computational fluid dynamics methodology to analyze the effect of body position on the drag coefficient during submerged gliding in swimming. The k-epsilon turbulent model implemented in the commercial code Fluent and applied to the flow around a three-dimensional model of a male adult swimmer was used. Two common gliding positions were investigated: a ventral position with th...
متن کاملThe Hydrodynamic Study of the Swimming Gliding: a Two-Dimensional Computational Fluid Dynamics (CFD) Analysis
Nowadays the underwater gliding after the starts and the turns plays a major role in the overall swimming performance. Hence, minimizing hydrodynamic drag during the underwater phases should be a main aim during swimming. Indeed, there are several postures that swimmers can assume during the underwater gliding, although experimental results were not conclusive concerning the best body position ...
متن کاملNumerical simulation of hydrodynamic properties of Alex type gliders
Simulation of an underwater glider to investigate the effect of angle of attack on the hydrodynamic coefficients such as lift, drag, and torque. Due to the vital role of these coefficients in designing the controllers of a glider and to obtain an accurate result, this simulation has been studied at a range of operating velocities. The total length of the underwater glider with two wings is 900 ...
متن کاملComputational Fluid Dynamics Study of Swimmer's Hand Velocity, Orientation, and Shape: Contributions to Hydrodynamics
The aim of this paper is to determine the hydrodynamic characteristics of swimmer's scanned hand models for various combinations of both the angle of attack and the sweepback angle and shape and velocity of swimmer's hand, simulating separate underwater arm stroke phases of freestyle (front crawl) swimming. Four realistic 3D models of swimmer's hand corresponding to different combinations of se...
متن کاملThe Effect of Depth on Drag During the Streamlined Glide: A Three-Dimensional CFD Analysis
The aim of this study was to analyze the effects of depth on drag during the streamlined glide in swimming using Computational Fluid Dynamics. The Computation Fluid Dynamic analysis consisted of using a three-dimensional mesh of cells that simulates the flow around the considered domain. We used the K-epsilon turbulent model implemented in the commercial code Fluent(®) and applied it to the flo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied biomechanics
دوره 26 3 شماره
صفحات -
تاریخ انتشار 2010